Copied to
clipboard

G = C42.241D6order 192 = 26·3

61st non-split extension by C42 of D6 acting via D6/S3=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.241D6, C4:Q8:20S3, (C4xS3):5Q8, D6.5(C2xQ8), C4.40(S3xQ8), C4:C4.219D6, C12.54(C2xQ8), C12:2Q8:36C2, (Q8xDic3):22C2, (C2xQ8).171D6, C6.48(C22xQ8), (S3xC42).10C2, (C2xC6).272C24, D6:C4.51C22, C4.D12.13C2, D6:3Q8.11C2, C4.Dic6:42C2, Dic3.17(C2xQ8), Dic6:C4:42C2, C12.136(C4oD4), C4.41(D4:2S3), (C2xC12).105C23, (C4xC12).213C22, C4.22(Q8:3S3), (C6xQ8).139C22, Dic3:C4.61C22, C4:Dic3.251C22, C22.293(S3xC23), (C22xS3).233C23, C3:6(C23.37C23), (C2xDic3).143C23, (C2xDic6).190C22, (C4xDic3).161C22, C2.31(C2xS3xQ8), (C3xC4:Q8):14C2, C6.100(C2xC4oD4), C4:C4:7S3.14C2, C2.64(C2xD4:2S3), (S3xC2xC4).252C22, C2.29(C2xQ8:3S3), (C3xC4:C4).215C22, (C2xC4).600(C22xS3), SmallGroup(192,1287)

Series: Derived Chief Lower central Upper central

C1C2xC6 — C42.241D6
C1C3C6C2xC6C22xS3S3xC2xC4S3xC42 — C42.241D6
C3C2xC6 — C42.241D6
C1C22C4:Q8

Generators and relations for C42.241D6
 G = < a,b,c,d | a4=b4=1, c6=b2, d2=a2b2, ab=ba, cac-1=dad-1=a-1, cbc-1=dbd-1=b-1, dcd-1=a2c5 >

Subgroups: 464 in 222 conjugacy classes, 111 normal (33 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C2xC4, C2xC4, C2xC4, Q8, C23, Dic3, Dic3, C12, C12, D6, D6, C2xC6, C42, C42, C22:C4, C4:C4, C4:C4, C22xC4, C2xQ8, C2xQ8, Dic6, C4xS3, C4xS3, C2xDic3, C2xDic3, C2xC12, C2xC12, C3xQ8, C22xS3, C2xC42, C42:C2, C4xQ8, C22:Q8, C42.C2, C4:Q8, C4:Q8, C4xDic3, C4xDic3, Dic3:C4, C4:Dic3, D6:C4, C4xC12, C3xC4:C4, C2xDic6, S3xC2xC4, C6xQ8, C23.37C23, C12:2Q8, S3xC42, Dic6:C4, C4.Dic6, C4:C4:7S3, C4.D12, Q8xDic3, D6:3Q8, C3xC4:Q8, C42.241D6
Quotients: C1, C2, C22, S3, Q8, C23, D6, C2xQ8, C4oD4, C24, C22xS3, C22xQ8, C2xC4oD4, D4:2S3, S3xQ8, Q8:3S3, S3xC23, C23.37C23, C2xD4:2S3, C2xS3xQ8, C2xQ8:3S3, C42.241D6

Smallest permutation representation of C42.241D6
On 96 points
Generators in S96
(1 44 77 51)(2 52 78 45)(3 46 79 53)(4 54 80 47)(5 48 81 55)(6 56 82 37)(7 38 83 57)(8 58 84 39)(9 40 73 59)(10 60 74 41)(11 42 75 49)(12 50 76 43)(13 63 34 92)(14 93 35 64)(15 65 36 94)(16 95 25 66)(17 67 26 96)(18 85 27 68)(19 69 28 86)(20 87 29 70)(21 71 30 88)(22 89 31 72)(23 61 32 90)(24 91 33 62)
(1 31 7 25)(2 26 8 32)(3 33 9 27)(4 28 10 34)(5 35 11 29)(6 30 12 36)(13 80 19 74)(14 75 20 81)(15 82 21 76)(16 77 22 83)(17 84 23 78)(18 79 24 73)(37 71 43 65)(38 66 44 72)(39 61 45 67)(40 68 46 62)(41 63 47 69)(42 70 48 64)(49 87 55 93)(50 94 56 88)(51 89 57 95)(52 96 58 90)(53 91 59 85)(54 86 60 92)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 6 83 76)(2 75 84 5)(3 4 73 74)(7 12 77 82)(8 81 78 11)(9 10 79 80)(13 27 28 24)(14 23 29 26)(15 25 30 22)(16 21 31 36)(17 35 32 20)(18 19 33 34)(37 57 50 44)(38 43 51 56)(39 55 52 42)(40 41 53 54)(45 49 58 48)(46 47 59 60)(61 87 96 64)(62 63 85 86)(65 95 88 72)(66 71 89 94)(67 93 90 70)(68 69 91 92)

G:=sub<Sym(96)| (1,44,77,51)(2,52,78,45)(3,46,79,53)(4,54,80,47)(5,48,81,55)(6,56,82,37)(7,38,83,57)(8,58,84,39)(9,40,73,59)(10,60,74,41)(11,42,75,49)(12,50,76,43)(13,63,34,92)(14,93,35,64)(15,65,36,94)(16,95,25,66)(17,67,26,96)(18,85,27,68)(19,69,28,86)(20,87,29,70)(21,71,30,88)(22,89,31,72)(23,61,32,90)(24,91,33,62), (1,31,7,25)(2,26,8,32)(3,33,9,27)(4,28,10,34)(5,35,11,29)(6,30,12,36)(13,80,19,74)(14,75,20,81)(15,82,21,76)(16,77,22,83)(17,84,23,78)(18,79,24,73)(37,71,43,65)(38,66,44,72)(39,61,45,67)(40,68,46,62)(41,63,47,69)(42,70,48,64)(49,87,55,93)(50,94,56,88)(51,89,57,95)(52,96,58,90)(53,91,59,85)(54,86,60,92), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,6,83,76)(2,75,84,5)(3,4,73,74)(7,12,77,82)(8,81,78,11)(9,10,79,80)(13,27,28,24)(14,23,29,26)(15,25,30,22)(16,21,31,36)(17,35,32,20)(18,19,33,34)(37,57,50,44)(38,43,51,56)(39,55,52,42)(40,41,53,54)(45,49,58,48)(46,47,59,60)(61,87,96,64)(62,63,85,86)(65,95,88,72)(66,71,89,94)(67,93,90,70)(68,69,91,92)>;

G:=Group( (1,44,77,51)(2,52,78,45)(3,46,79,53)(4,54,80,47)(5,48,81,55)(6,56,82,37)(7,38,83,57)(8,58,84,39)(9,40,73,59)(10,60,74,41)(11,42,75,49)(12,50,76,43)(13,63,34,92)(14,93,35,64)(15,65,36,94)(16,95,25,66)(17,67,26,96)(18,85,27,68)(19,69,28,86)(20,87,29,70)(21,71,30,88)(22,89,31,72)(23,61,32,90)(24,91,33,62), (1,31,7,25)(2,26,8,32)(3,33,9,27)(4,28,10,34)(5,35,11,29)(6,30,12,36)(13,80,19,74)(14,75,20,81)(15,82,21,76)(16,77,22,83)(17,84,23,78)(18,79,24,73)(37,71,43,65)(38,66,44,72)(39,61,45,67)(40,68,46,62)(41,63,47,69)(42,70,48,64)(49,87,55,93)(50,94,56,88)(51,89,57,95)(52,96,58,90)(53,91,59,85)(54,86,60,92), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,6,83,76)(2,75,84,5)(3,4,73,74)(7,12,77,82)(8,81,78,11)(9,10,79,80)(13,27,28,24)(14,23,29,26)(15,25,30,22)(16,21,31,36)(17,35,32,20)(18,19,33,34)(37,57,50,44)(38,43,51,56)(39,55,52,42)(40,41,53,54)(45,49,58,48)(46,47,59,60)(61,87,96,64)(62,63,85,86)(65,95,88,72)(66,71,89,94)(67,93,90,70)(68,69,91,92) );

G=PermutationGroup([[(1,44,77,51),(2,52,78,45),(3,46,79,53),(4,54,80,47),(5,48,81,55),(6,56,82,37),(7,38,83,57),(8,58,84,39),(9,40,73,59),(10,60,74,41),(11,42,75,49),(12,50,76,43),(13,63,34,92),(14,93,35,64),(15,65,36,94),(16,95,25,66),(17,67,26,96),(18,85,27,68),(19,69,28,86),(20,87,29,70),(21,71,30,88),(22,89,31,72),(23,61,32,90),(24,91,33,62)], [(1,31,7,25),(2,26,8,32),(3,33,9,27),(4,28,10,34),(5,35,11,29),(6,30,12,36),(13,80,19,74),(14,75,20,81),(15,82,21,76),(16,77,22,83),(17,84,23,78),(18,79,24,73),(37,71,43,65),(38,66,44,72),(39,61,45,67),(40,68,46,62),(41,63,47,69),(42,70,48,64),(49,87,55,93),(50,94,56,88),(51,89,57,95),(52,96,58,90),(53,91,59,85),(54,86,60,92)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,6,83,76),(2,75,84,5),(3,4,73,74),(7,12,77,82),(8,81,78,11),(9,10,79,80),(13,27,28,24),(14,23,29,26),(15,25,30,22),(16,21,31,36),(17,35,32,20),(18,19,33,34),(37,57,50,44),(38,43,51,56),(39,55,52,42),(40,41,53,54),(45,49,58,48),(46,47,59,60),(61,87,96,64),(62,63,85,86),(65,95,88,72),(66,71,89,94),(67,93,90,70),(68,69,91,92)]])

42 conjugacy classes

class 1 2A2B2C2D2E 3 4A···4F4G4H4I4J4K4L4M4N4O4P4Q4R4S4T4U4V6A6B6C12A···12F12G12H12I12J
order12222234···4444444444444444466612···1212121212
size11116622···2333344446666121212122224···48888

42 irreducible representations

dim1111111111222222444
type+++++++++++-+++--+
imageC1C2C2C2C2C2C2C2C2C2S3Q8D6D6D6C4oD4D4:2S3S3xQ8Q8:3S3
kernelC42.241D6C12:2Q8S3xC42Dic6:C4C4.Dic6C4:C4:7S3C4.D12Q8xDic3D6:3Q8C3xC4:Q8C4:Q8C4xS3C42C4:C4C2xQ8C12C4C4C4
# reps1112222221141428222

Matrix representation of C42.241D6 in GL6(F13)

500000
580000
005000
000800
0000120
0000012
,
500000
580000
0012000
0001200
0000120
0000012
,
1110000
1120000
000100
001000
0000012
0000112
,
1220000
010000
0001200
001000
0000112
0000012

G:=sub<GL(6,GF(13))| [5,5,0,0,0,0,0,8,0,0,0,0,0,0,5,0,0,0,0,0,0,8,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[5,5,0,0,0,0,0,8,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,1,0,0,0,0,11,12,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,12,12],[12,0,0,0,0,0,2,1,0,0,0,0,0,0,0,1,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,12,12] >;

C42.241D6 in GAP, Magma, Sage, TeX

C_4^2._{241}D_6
% in TeX

G:=Group("C4^2.241D6");
// GroupNames label

G:=SmallGroup(192,1287);
// by ID

G=gap.SmallGroup(192,1287);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,232,100,1123,570,185,80,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^6=b^2,d^2=a^2*b^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=d*b*d^-1=b^-1,d*c*d^-1=a^2*c^5>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<